Ciprofloxacin is a synthetic broad-spectrum antimicrobial agent for intravenous (I.V.) administration. Ciprofloxacin, a fluoroquinolone, is 1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinolinecarboxylic acid. Its empirical formula is C17H18FN3O3 and its chemical structure is:
Ciprofloxacin is a faint to light yellow crystalline powder with a molecular weight of 331.4. It is soluble in dilute (0.1N) hydrochloric acid and is practically insoluble in water and ethanol. Ciprofloxacin injection solutions are available as sterile 1% aqueous concentrates, which are intended for dilution prior to administration, and as 0.2% ready-for-use infusion solutions in 5% Dextrose Injection. All formulas contain lactic acid as a solubilizing agent and hydrochloric acid for pH adjustment. The pH range for the 1% aqueous concentrates in vials is 3.3 to 3.9. The pH range for the 0.2% ready-for-use infusion solutions is 3.5 to 4.6.
The plastic container is latex-free and is fabricated from a specially formulated polyvinyl chloride. Solutions in contact with the plastic container can leach out certain of its chemical components in very small amounts within the expiration period, e.g., di(2-ethylhexyl) phthalate (DEHP), up to 5 parts per million. The suitability of the plastic has been confirmed in tests in animals according to USP biological tests for plastic containers as well as by tissue culture toxicity studies.
Ciprofloxacin in 5% Dextrose - Clinical Pharmacology
Absorption
Following 60-minute intravenous infusions of 200 mg and 400 mg ciprofloxacin to normal volunteers, the mean maximum serum concentrations achieved were 2.1 and 4.6 mcg/mL, respectively; the concentrations at 12 hours were 0.1 and 0.2 mcg/mL, respectively.
Steady-state Ciprofloxacin Serum Concentrations (mcg/mL)
After 60-minute I.V. Infusions q 12 h.
|
Time after starting the infusion
|
Dose
|
30 min
|
1 hr
|
3 hr
|
6 hr
|
8 hr
|
12 hr
|
200 mg
|
1.7
|
2.1
|
0.6
|
0.3
|
0.2
|
0.1
|
400 mg
|
3.7
|
4.6
|
1.3
|
0.7
|
0.5
|
0.2
|
The pharmacokinetics of ciprofloxacin are linear over the dose range of 200 to 400 mg administered intravenously. Comparison of the pharmacokinetic parameters following the 1st and 5th I.V. dose on a q 12 h regimen indicates no evidence of drug accumulation.
The absolute bioavailability of oral ciprofloxacin is within a range of 70–80% with no substantial loss by first pass metabolism. An intravenous infusion of 400-mg ciprofloxacin given over 60 minutes every 12 hours has been shown to produce an area under the serum concentration time curve (AUC) equivalent to that produced by a 500-mg oral dose given every 12 hours. An intravenous infusion of 400 mg ciprofloxacin given over 60 minutes every 8 hours has been shown to produce an AUC at steady-state equivalent to that produced by a 750-mg oral dose given every 12 hours. A 400-mg I.V. dose results in a Cmax similar to that observed with a 750-mg oral dose. An infusion of 200 mg ciprofloxacin given every 12 hours produces an AUC equivalent to that produced by a 250-mg oral dose given every 12 hours.
Steady-state Pharmacokinetic Parameter
Following Multiple Oral and I.V. Doses
|
Parameters
|
500 mg
q12h, P.O.
|
400 mg
q12h, I.V.
|
750 mg
q12h, P.O.
|
400 mg
q8h, I.V.
|
AUC (mcg•hr/mL)
|
13.7a
|
12.7a
|
31.6b
|
32.9c
|
Cmax (mcg/mL)
|
2.97
|
4.56
|
3.59
|
4.07
|
a AUC0-12h
b AUC 24h = AUC0-12h × 2
c AUC 24h = AUC0-8h × 3
|
Distribution
After intravenous administration, ciprofloxacin is present in saliva, nasal and bronchial secretions, sputum, skin blister fluid, lymph, peritoneal fluid, bile, and prostatic secretions. It has also been detected in the lung, skin, fat, muscle, cartilage, and bone. Although the drug diffuses into cerebrospinal fluid (CSF), CSF concentrations are generally less than 10% of peak serum concentrations. Levels of the drug in the aqueous and vitreous chambers of the eye are lower than in serum.
Metabolism
After I.V. administration, three metabolites of ciprofloxacin have been identified in human urine which together account for approximately 10% of the intravenous dose. The binding of ciprofloxacin to serum proteins is 20 to 40%. Ciprofloxacin is an inhibitor of human cytochrome P450 1A2 (CYP1A2) mediated metabolism. Coadministration of ciprofloxacin with other drugs primarily metabolized by CYP1A2 results in increased plasma concentrations of these drugs and could lead to clinically significant adverse events of the coadministered drug (see CONTRAINDICATIONS; WARNINGS; PRECAUTIONS: Drug Interactions).
Excretion
The serum elimination half-life is approximately 5–6 hours and the total clearance is around 35 L/hr. After intravenous administration, approximately 50% to 70% of the dose is excreted in the urine as unchanged drug. Following a 200-mg I.V. dose, concentrations in the urine usually exceed 200 mcg/mL 0–2 hours after dosing and are generally greater than 15 mcg/mL 8–12 hours after dosing. Following a 400-mg I.V. dose, urine concentrations generally exceed 400 mcg/mL 0–2 hours after dosing and are usually greater than 30 mcg/mL 8–12 hours after dosing. The renal clearance is approximately 22 L/hr. The urinary excretion of ciprofloxacin is virtually complete by 24 hours after dosing.
Although bile concentrations of ciprofloxacin are several fold higher than serum concentrations after intravenous dosing, only a small amount of the administered dose (< 1%) is recovered from the bile as unchanged drug. Approximately 15% of an I.V. dose is recovered from the feces within 5 days after dosing.
Special Populations
Pharmacokinetic studies of the oral (single dose) and intravenous (single and multiple dose) forms of ciprofloxacin indicate that plasma concentrations of ciprofloxacin are higher in elderly subjects (> 65 years) as compared to young adults. Although the Cmax is increased 16 – 40%, the increase in mean AUC is approximately 30%, and can be at least partially attributed to decreased renal clearance in the elderly. Elimination half-life is only slightly (~20%) prolonged in the elderly. These differences are not considered clinically significant (See PRECAUTIONS: Geriatric Use).
In patients with reduced renal function, the half-life of ciprofloxacin is slightly prolonged and dosage adjustments may be required (See DOSAGE AND ADMINISTRATION).
In preliminary studies in patients with stable chronic liver cirrhosis, no significant changes in ciprofloxacin pharmacokinetics have been observed. However, the kinetics of ciprofloxacin in patients with acute hepatic insufficiency have not been fully elucidated.
Following a single oral dose of 10 mg/kg ciprofloxacin suspension to 16 children ranging in age from 4 months to 7 years, the mean Cmax was 2.4 mcg/mL (range: 1.5 – 3.4 mcg/mL) and the mean AUC was 9.2 mcg*h/mL (range: 5.8 – 14.9 mcg*h/mL). There was no apparent age-dependence, and no notable increase in Cmax or AUC upon multiple dosing (10 mg/kg TID). In children with severe sepsis who were given intravenous ciprofloxacin (10 mg/kg as a 1-hour infusion), the mean Cmax was 6.1 mcg/mL (range: 4.6 – 8.3 mcg/mL) in 10 children less than 1 year of age; and 7.2 mcg/mL (range: 4.7 – 11.8 mcg/mL) in 10 children between 1 and 5 years of age. The AUC values were 17.4 mcg*h/mL (range: 11.8 – 32.0 mcg*h/mL) and 16.5 mcg*h/mL (range: 11.0 – 23.8 mcg*h/mL) in the respective age groups. These values are within the range reported for adults at therapeutic doses. Based on population pharmacokinetic analysis of pediatric patients with various infections, the predicted mean half-life in children is approximately 4-5 hours, and the bioavailability of the oral suspension is approximately 60%.
Drug-drug Interactions
Concomitant administration with tizanidine is contraindicated (See CONTRAINDICATIONS). The potential for pharmacokinetic drug interactions between ciprofloxacin and theophylline, caffeine, cyclosporins, phenytoin, sulfonylurea glyburide, metronidazole, warfarin, probenecid, and piperacillin sodium has been evaluated (See WARNINGS; PRECAUTIONS: Drug Interactions).
MICROBIOLOGY
Ciprofloxacin has in vitro activity against a wide range of gram-negative and gram-positive microorganisms. The bactericidal action of ciprofloxacin results from inhibition of the enzymes topoisomerase II (DNA gyrase) and topoisomerase IV, which are required for bacterial DNA replication, transcription, repair, and recombination. The mechanism of action of fluoroquinolones, including ciprofloxacin, is different from that of penicillins, cephalosporins, aminoglycosides, macrolides, and tetracyclines; therefore, microorganisms resistant to these classes of drugs may be susceptible to ciprofloxacin and other quinolones. There is no known cross-resistance between ciprofloxacin and other classes of antimicrobials. In vitro resistance to ciprofloxacin develops slowly by multiple step mutations.
Ciprofloxacin is slightly less active when tested at acidic pH. The inoculum size has little effect when tested in vitro. The minimal bactericidal concentration (MBC) generally does not exceed the minimal inhibitory concentration (MIC) by more than a factor of 2.
Ciprofloxacin has been shown to be active against most strains of the following microorganisms, both in vitro and in clinical infections as described in the INDICATIONS AND USAGE section of the package insert for ciprofloxacin for intravenous infusion.
Aerobic gram-positive microorganisms
|
Enterococcus faecalis (Many strains are only moderately susceptible)
Staphylococcus aureus (methicillin-susceptible strains only)
Staphylococcus epidermidis (methicillin-susceptible strains only)
Staphylococcus saprophyticus
Streptococcus pneumoniae (penicillin-susceptible strains)
Streptococcus pyogenes
|
Aerobic gram-negative microorganisms
| |
Citrobacter diversus
Citrobacter freundii
Enterobacter cloacae
Escherichia coli
Haemophilus influenzae
Haemophilus parainfluenzae
Klebsiella pneumoniae
Moraxella catarrhalis
|
Morganella morganii
Proteus mirabilis
Proteus vulgaris
Providencia rettgeri
Providencia stuartii
Pseudomonas aeruginosa
Serratia marcescens
|
Ciprofloxacin has been shown to be active against Bacillus anthracis both in vitro and by use of serum levels as a surrogate marker (see INDICATIONS AND USAGE and INHALATIONAL ANTHRAX-ADDITIONAL INFORMATION).
The following in vitro data are available, but their clinical significance is unknown.
Ciprofloxacin exhibits in vitro minimum inhibitory concentrations (MICs) of 1 mcg/mL or less against most (≥ 90%) strains of the following microorganisms; however, the safety and effectiveness of ciprofloxacin intravenous formulations in treating clinical infections due to these microorganisms have not been established in adequate and well-controlled clinical trials.
Aerobic gram-positive microorganisms
|
Staphylococcus haemolyticus
Staphylococcus hominis
Streptococcus pneumoniae (penicillin-resistant strains)
|
Aerobic gram-negative microorganisms
| |
Acinetobacter Iwoffi
Aeromonas hydrophila
Campylobacter jejuni
Edwardsiella tarda
Enterobacter aerogenes
Klebsiella oxytoca
Legionella pneumophila
Neisseria gonorrhoeae
Pasteurella multocida
Salmonella enteritidis
|
Salmonella typhi
Shigella boydii
Shigella dysenteriae
Shigella flexneri
Shigella sonnei
Vibrio cholera
Vibrio parahaemolyticus
Vibrio vulnificus
Yersinia enterocolitica
|
Most strains of Burkholderia cepacia and some strains of Stenotrophomonas maltophilia are resistant to ciprofloxacin as are most anaerobic bacteria, including Bacteroides fragilis and Clostridium difficile.
Susceptibility Tests
Dilution Techniques: Quantitative methods are used to determine antimicrobial minimum inhibitory concentrations (MICs). These MICs provide estimates of the susceptibility of bacteria to antimicrobial compounds. The MICs should be determined using a standardized procedure. Standardized procedures are based on a dilution method1 (broth or agar) or equivalent with standardized inoculum concentrations and standardized concentrations of ciprofloxacin powder. The MIC values should be interpreted according to the following criteria:
For testing Enterobacteriaceae, Enterococcus faecalis, methicillin-susceptible Staphylococcus species, penicillin-susceptible Streptococcus pneumoniae, Streptococcus pyogenes, and Pseudomonas aeruginosaa:
MIC (mcg/mL) | Interpretation |
≤1 | Susceptible (S) |
2 | Intermediate (I) |
≥4 | Resistant (R) |
a These interpretive standards are applicable only to broth microdilution susceptibility tests with streptococci using cation-adjusted Mueller-Hinton broth with 2–5% lysed horse blood.
For testing Haemophilus influenzae and Haemophilus parainfluenzae b:
MIC (mcg/mL) | Interpretation |
≤ 1
| Susceptible (S) |
b This interpretive standard is applicable only to broth microdilution susceptibility tests with Haemophilus influenzae and Haemophilus parainfluenzae using Haemophilus Test Medium1.
The current absence of data on resistant strains precludes defining any results other than “Susceptible”. Strains yielding MIC results suggestive of a “nonsusceptible” category should be submitted to a reference laboratory for further testing.
A report of “Susceptible” indicates that the pathogen is likely to be inhibited if the antimicrobial compound in the blood reaches the concentrations usually achievable. A report of “Intermediate” indicates that the result should be considered equivocal, and, if the microorganism is not fully susceptible to alternative, clinically feasible drugs, the test should be repeated. This category implies possible clinical applicability in body sites where the drug is physiologically concentrated or in situations where high dosage of drug can be used. This category also provides a buffer zone, which prevents small uncontrolled technical factors from causing major discrepancies in interpretation. A report of “Resistant” indicates that the pathogen is not likely to be inhibited if the antimicrobial compound in the blood reaches the concentrations usually achievable; other therapy should be selected.
Standardized susceptibility test procedures require the use of laboratory control microorganisms to control the technical aspects of the laboratory procedures. Standard ciprofloxacin powder should provide the following MIC values:
Organism | MIC (mcg/mL) |
E. faecalis ATCC 29212 | 0.25 - 2.0 |
E.coli ATCC 25922 | 0.004 - 0.015 |
H. influenzaea ATCC 49247 | 0.004 - 0.03 |
P. aeruginosa ATCC 27583 | 0.25 - 1.0 |
S. aureus ATCC 29213 | 0.12 - 0.5 |
a This quality control range is applicable to only H. influenzae ATCC 49247 tested by a broth microdilution procedure using Haemophilus Test Medium (HTM)1.
Diffusion Techniques: Quantitative methods that require measurement of zone diameters also provide reproducible estimates of the susceptibility of bacteria to antimicrobial compounds. One such standardized procedure2 requires the use of standardized inoculum concentrations. This procedure uses paper disks impregnated with 5-mcg ciprofloxacin to test the susceptibility of microorganisms to ciprofloxacin.
Reports from the laboratory providing results of the standard single-disk susceptibility test with a 5-mcg ciprofloxacin disk should be interpreted according to the following criteria:
For testing Enterobacteriaceae, Enterococcus faecalis, methicillin-susceptible Staphylococcus species, penicillin-susceptible Streptococcus pneumoniae, Streptococcus pyogenes, and Pseudomonas aeruginosa a:
Zone Diameter (mm) | Interpretation |
≥ 21 | Susceptible (S) |
16 - 20 | Intermediate (I) |
≤ 15 | Resistant (R) |
a These zone diameter standards are applicable only to tests performed for streptococci using Mueller-Hinton agar supplemented with 5% sheep blood incubated in 5% CO2.
For testing Haemophilus influenzae and Haemophilus parainfluenzae b:
Zone Diameter (mm) | Interpretation |
≥ 21 | Susceptible (S) |
b This zone diameter standard is applicable only to tests with Haemophilus influenzae and Haemophilus parainfluenzae using Haemophilus Test Medium (HTM)2.
The current absence of data on resistant strains precludes defining any results other than “Susceptible”. Strains yielding zone diameter results suggestive of a “nonsusceptible” category should be submitted to a reference laboratory for further testing.
Interpretation should be as stated above for results using dilution techniques. Interpretation involves correlation of the diameter obtained in the disk test with the MIC for ciprofloxacin.
As with standardized dilution techniques, diffusion methods require the use of laboratory control microorganisms that are used to control the technical aspects of the laboratory procedures. For the diffusion technique, the 5-mcg ciprofloxacin disk should provide the following zone diameters in these laboratory test quality control strains:
Organism | Zone Diameter (mm) |
E.coli ATCC 25922 | 30 - 40 |
H. influenzaea ATCC 49247 | 34 - 42 |
P. aeruginosa ATCC 27583 | 25 - 33 |
S. aureus ATCC 29213 | 22 - 30 |
a These quality control limits are applicable to only H. influenzae ATCC 49247 testing using Haemophilus Test Medium (HTM)2.
Indications and Usage for Ciprofloxacin in 5% Dextrose
Ciprofloxacin injection is indicated for the treatment of infections caused by susceptible strains of the designated microorganisms in the conditions and patient populations listed below when the intravenous administration offers a route of administration advantageous to the patient. Please seeDOSAGE AND ADMINISTRATION for specific recommendations.
Adult Patients:
Urinary Tract Infections caused by Escherichia coli (including cases with secondary bacteremia), Klebsiella pneumoniae subspecies pneumoniae, Enterobacter cloacae, Serratia marcescens, Proteus mirabilis, Providencia rettgeri, Morganella morganii, Citrobacter diversus, Citrobacter freundii, Pseudomonas aeruginosa, methicillin-susceptible Staphylococcus epidermidis, Staphylococcus saprophyticus, or Enterococcus faecalis.
Lower Respiratory Infections caused by Escherichia coli, Klebsiella pneumoniae subspecies pneumoniae, Enterobacter cloacae, Proteus mirabilis, Pseudomonas aeruginosa, Haemophilus influenzae, Haemophilus parainfluenzae, or penicillin-susceptible Streptococcus pneumoniae. Also, Moraxella catarrhalis for the treatment of acute exacerbations of chronic bronchitis.
NOTE: Although effective in clinical trials, ciprofloxacin is not a drug of first choice in the treatment of presumed or confirmed pneumonia secondary to Streptococcus pneumoniae.
Nosocomial Pneumonia caused by Haemophilus influenzae or Klebsiella pneumoniae.
Skin and Skin Structure Infections caused by Escherichia coli, Klebsiella pneumoniae subspecies pneumoniae, Enterobacter cloacae, Proteus mirabilis, Proteus vulgaris, Providencia stuartii, Morganella morganii, Citrobacter freundii, Pseudomonas aeruginosa, methicillin-susceptible Staphylococcus aureus, methicillin-susceptible Staphylococcus epidermidis, or Streptococcus pyogenes.
Bone and Joint Infections caused by Enterobacter cloacae, Serratia marcescens, or Pseudomonas aeruginosa.
Complicated Intra-Abdominal Infections (used in conjunction with metronidazole) caused by Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis, Klebsiella pneumoniae, or Bacteroides fragilis.
Acute Sinusitis caused by Haemophilus influenzae, penicillin-susceptible Streptococcus pneumoniae, or Moraxella catarrhalis.
Chronic Bacterial Prostatitis caused by Escherichia coli or Proteus mirabilis.
Empirical Therapy for Febrile Neutropenic Patients in combination with piperacillin sodium (See CLINICAL STUDIES).
Pediatric Patients (1 to 17 years of age):
Complicated Urinary Tract Infections and Pyelonephritis due to Escherichia coli.
NOTE: Although effective in clinical trials, ciprofloxacin is not a drug of first choice in the pediatric population due to an increased incidence of adverse events compared to controls, including events related to joints and/or surrounding tissues (See WARNINGS, PRECAUTIONS, Pediatric Use, ADVERSE REACTIONS and CLINICAL STUDIES). Ciprofloxacin, like other fluoroquinolones, is associated with arthropathy and histopathological changes in weight-bearing joints of juvenile animals (See ANIMAL PHARMACOLOGY).
Adult and Pediatric Patients:
Inhalational anthrax (post-exposure): To reduce the incidence or progression of disease following exposure to aerosolized Bacillus anthracis.
Ciprofloxacin serum concentrations achieved in humans served as a surrogate endpoint reasonably likely to predict clinical benefit and provided the initial basis for approval of this indication.4 Supportive clinical information for ciprofloxacin for anthrax post-exposure prophylaxis was obtained during the anthrax bioterror attacks of October 2001 (See also, INHALATIONAL ANTHRAX – ADDITIONAL INFORMATION).
If anaerobic organisms are suspected of contributing to the infection, appropriate therapy should be administered.
Appropriate culture and susceptibility tests should be performed before treatment in order to isolate and identify organisms causing infection and to determine their susceptibility to ciprofloxacin. Therapy with ciprofloxacin injection may be initiated before results of these tests are known; once results become available, appropriate therapy should be continued.
As with other drugs, some strains of Pseudomonas aeruginosa may develop resistance fairly rapidly during treatment with ciprofloxacin. Culture and susceptibility testing performed periodically during therapy will provide information not only on the therapeutic effect of the antimicrobial agent but also on the possible emergence of bacterial resistance.
To reduce the development of drug-resistant bacteria and maintain the effectiveness of ciprofloxacin injection and other antibacterial drugs, ciprofloxacin injection should be used only to treat or prevent infections that are proven or strongly suspected to be caused by susceptible bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy.
Contraindications
Ciprofloxacin is contraindicated in persons with a history of hypersensitivity to ciprofloxacin, any member of the quinolone class of antimicrobial agents, or any of the product components.
Concomitant administration with tizanidine is contraindicated (See PRECAUTIONS: Drug Interactions).
Warnings
Tendinopathy and Tendon Rupture: Fluoroquinolones, including ciprofloxacin injection, are associated with an increased risk of tendinitis and tendon rupture in all ages. This adverse reaction most frequently involves the Achilles tendon, and rupture of the Achilles tendon may require surgical repair. Tendinitis and tendon rupture in the rotator cuff (the shoulder), the hand, the biceps, the thumb, and other tendon sites have also been reported. The risk of developing fluoroquinolone-associated tendinitis and tendon rupture is further increased in older patients usually over 60 years of age, in patients taking corticosteroid drugs, and in patients with kidney, heart or lung transplants. Factors, in addition to age and corticosteroid use, that may independently increase the risk of tendon rupture include strenuous physical activity, renal failure, and previous tendon disorders such as rheumatoid arthritis. Tendinitis and tendon rupture have also occurred in patients taking fluoroquinolones who do not have the above risk factors. Tendon rupture can occur during or after completion of therapy; cases occurring up to several months after completion of therapy have been reported. Ciprofloxacin injection should be discontinued if the patient experiences pain, swelling, inflammation or rupture of a tendon. Patients should be advised to rest at the first sign of tendinitis or tendon rupture, and to contact their healthcare provider regarding changing to a non-quinolone antimicrobial drug.
Exacerbation of Myasthenia Gravis: Fluoroquinolones, including ciprofloxacin injection, have neuromuscular blocking activity and may exacerbate muscle weakness in persons with myasthenia gravis. Post-marketing serious adverse events, including deaths and requirement for ventilatory support, have been associated with fluoroquinolone use in persons with myasthenia gravis. Avoid ciprofloxacin in patients with known history of myasthenia gravis (See PRECAUTIONS: Information for Patients and ADVERSE REACTIONS: Post-Marketing Adverse Event Reports).
Pregnant Women: THE SAFETY AND EFFECTIVENESS OF CIPROFLOXACIN IN PREGNANT AND LACTATING WOMEN HAVE NOT BEEN ESTABLISHED. (See PRECAUTIONS: Pregnancy,and Nursing Mothers subsections).
Pediatrics: Ciprofloxacin should be used in pediatric patients (less than 18 years of age) only for infections listed in the INDICATIONS AND USAGE section. An increased incidence of adverse events compared to controls, including events related to joints and/or surrounding tissues, has been observed (See ADVERSE REACTIONS).
In pre-clinical studies, oral administration of ciprofloxacin caused lameness in immature dogs. Histopathological examination of the weight-bearing joints of these dogs revealed permanent lesions of the cartilage. Related quinolone-class drugs also produce erosions of cartilage of weight-bearing joints and other signs of arthropathy in immature animals of various species (SeeANIMAL PHARMACOLOGY).
Cytochrome P450 (CYP450): Ciprofloxacin is an inhibitor of the hepatic CYP1A2 enzyme pathway. Coadministration of ciprofloxacin and other drugs primarily metabolized by CYP1A2 (e.g. theophylline, methylxanthines, tizanidine) results in increased plasma concentrations of the coadministered drug and could lead to clinically significant pharmacodynamic side effects of the coadministered drug.
Central Nervous System Disorders: Convulsions, increased intracranial pressure and toxic psychosis have been reported in patients receiving quinolones, including ciprofloxacin. Ciprofloxacin may also cause central nervous system (CNS) events including: dizziness, confusion, tremors, hallucinations, depression, and, rarely, suicidal thoughts or acts. These reactions may occur following the first dose. If these reactions occur in patients receiving ciprofloxacin, the drug should be discontinued and appropriate measures instituted. As with all quinolones, ciprofloxacin should be used with caution in patients with known or suspected CNS disorders that may predispose to seizures or lower the seizure threshold (e.g. severe cerebral arteriosclerosis, epilepsy), or in the presence of other risk factors that may predispose to seizures or lower the seizure threshold (e.g. certain drug therapy, renal dysfunction) (See PRECAUTIONS: General, Information for Patients, Drug Interactions and ADVERSE REACTIONS).
Theophylline: SERIOUS AND FATAL REACTIONS HAVE BEEN REPORTED IN PATIENTS RECEIVING CONCURRENT ADMINISTRATION OF INTRAVENOUS CIPROFLOXACIN AND THEOPHYLLINE. These reactions have included cardiac arrest, seizure, status epilepticus, and respiratory failure. Although similar serious adverse events have been reported in patients receiving theophylline alone, the possibility that these reactions may be potentiated by ciprofloxacin cannot be eliminated. If concomitant use cannot be avoided, serum levels of theophylline should be monitored and dosage adjustments made as appropriate.
Hypersensitivity Reactions: Serious and occasionally fatal hypersensitivity (anaphylactic) reactions, some following the first dose, have been reported in patients receiving quinolone therapy. Some reactions were accompanied by cardiovascular collapse, loss of consciousness, tingling, pharyngeal or facial edema, dyspnea, urticaria, and itching. Only a few patients had a history of hypersensitivity reactions. Serious anaphylactic reactions require immediate emergency treatment with epinephrine and other resuscitation measures, including oxygen, intravenous fluids, intravenous antihistamines, corticosteroids, pressor amines, and airway management, as clinically indicated.
Other serious and sometimes fatal events, some due to hypersensitivity, and some due to uncertain etiology, have been reported rarely in patients receiving therapy with quinolones, including ciprofloxacin. These events may be severe and generally occur following the administration of multiple doses. Clinical manifestations may include one or more of the following:
- fever, rash, or severe dermatologic reactions (e.g., toxic epidermal necrolysis, Stevens-Johnson syndrome);
- vasculitis; arthralgia; myalgia; serum sickness;
- allergic pneumonitis;
- interstitial nephritis; acute renal insufficiency or failure;
- hepatitis; jaundice; acute hepatic necrosis or failure;
- anemia, including hemolytic and aplastic; thrombocytopenia, including thrombotic thrombocytopenic purpura; leukopenia; agranulocytosis; pancytopenia; and/or other hematologic abnormalities.
The drug should be discontinued immediately at the first appearance of a skin rash, jaundice, or any other sign of hypersensitivity and supportive measures instituted (see PRECAUTIONS: Information for Patients and ADVERSE REACTIONS).
Pseudomembranous Colitis: Clostridium difficile associated diarrhea (CDAD) has been reported with use of nearly all antibacterial agents, including ciprofloxacin, and may range in severity from mild diarrhea to fatal colitis. Treatment with antibacterial agents alters the normal flora of the colon leading to overgrowth of C. difficile.
C. difficile produces toxins A and B which contribute to the development of CDAD. Hypertoxin producing strains of C. difficile cause increased morbidity and mortality, as these infections can be refractory to antimicrobial therapy and may require colectomy. CDAD must be considered in all patients who present with diarrhea following antibiotic use. Careful medical history is necessary since CDAD has been reported to occur over two months after the administration of antibacterial agents.
If CDAD is suspected or confirmed, ongoing antibiotic use not directed against C. difficile may need to be discontinued. Appropriate fluid and electrolyte management, protein supplementation, antibiotic treatment of C. difficile, and surgical evaluation should be instituted as clinically indicated.
Peripheral neuropathy: Rare cases of sensory or sensorimotor axonal polyneuropathy affecting small and/or large axons resulting in paresthesias, hypoesthesias, dysesthesias and weakness have been reported in patients receiving quinolones, including ciprofloxacin. Ciprofloxacin should be discontinued if the patient experiences symptoms of neuropathy including pain, burning, tingling, numbness, and/or weakness, or is found to have deficits in light touch, pain, temperature, position sense, vibratory sensation, and/or motor strength in order to prevent the development of an irreversible condition.
Precautions
General
INTRAVENOUS CIPROFLOXACIN SHOULD BE ADMINISTERED BY SLOW INFUSION OVER A PERIOD OF 60 MINUTES. Local I.V. site reactions have been reported with the intravenous administration of ciprofloxacin. These reactions are more frequent if infusion time is 30 minutes or less or if small veins of the hand are used (See ADVERSE REACTIONS).
Central Nervous System: Quinolones, including ciprofloxacin, may also cause central nervous system (CNS) events, including: nervousness, agitation, insomnia, anxiety, nightmares or paranoia (See PRECAUTIONS, Information for Patients, and Drug Interactions).
Crystals of ciprofloxacin have been observed rarely in the urine of human subjects but more frequently in the urine of laboratory animals, which is usually alkaline (See ANIMAL PHARMACOLOGY). Crystalluria related to ciprofloxacin has been reported only rarely in humans because human urine is usually acidic. Alkalinity of the urine should be avoided in patients receiving ciprofloxacin. Patients should be well hydrated to prevent the formation of highly concentrated urine.
Renal Impairment: Alteration of the dosage regimen is necessary for patients with impairment of renal function (See DOSAGE AND ADMINISTRATION).
Photosensitivity/Phototoxicity: Moderate to severe photosensitivity/phototoxicity reactions, the latter of which may manifest as exaggerated sunburn reactions (e.g., burning, erythema, exudation, vesicles, blistering, edema) involving areas exposed to light (typically the face, “V” area of the neck, extensor surfaces of the forearms, dorsa of the hands), can be associated with the use of quinolones after sun or UV light exposure. Therefore, excessive exposure to these sources of light should be avoided. Drug therapy should be discontinued if phototoxicity occurs (See ADVERSE REACTIONS - Post-Marketing Adverse Events).
As with any potent drug, periodic assessment of organ system functions, including renal, hepatic, and hematopoietic, is advisable during prolonged therapy.
Prescribing ciprofloxacin injection in the absence of a proven or strongly suspected bacterial infection or a prophylactic indication is unlikely to provide benefit to the patient and increases the risk of the development of drug-resistant bacteria.
Information for Patients
Patients should be advised:
- to contact their healthcare provider if they experience pain, swelling, or inflammation of a tendon, or weakness or inability to use one of their joints; rest and refrain from exercise; and discontinue ciprofloxacin injection treatment. The risk of severe tendon disorder with fluoroquinolones is higher in older patients usually over 60 years of age, in patients taking corticosteroid drugs, and in patients with kidney, heart or lung transplants.
- that fluoroquinolones like ciprofloxacin injection may cause worsening of myasthenia gravis symptoms, including muscle weakness and breathing problems. Patients should call their healthcare provider right away if they have any worsening muscle weakness or breathing problems.
- that antibacterial drugs including ciprofloxacin injection should only be used to treat bacterial infections. They do not treat viral infections (e.g., the common cold). When ciprofloxacin injection is prescribed to treat a bacterial infection, patients should be told that although it is common to feel better early in the course of therapy, the medication should be taken exactly as directed. Skipping doses or not completing the full course of therapy may (1) decrease the effectiveness of the immediate treatment and (2) increase the likelihood that bacteria will develop resistance and will not be treatable by ciprofloxacin injection or other antibacterial drugs in the future.
- that ciprofloxacin may be associated with hypersensitivity reactions, even following a single dose, and to discontinue the drug at the first sign of a skin rash or other allergic reaction.
- that photosensitivity/phototoxicity has been reported in patients receiving quinolones. Patients should minimize or avoid exposure to natural or artificial sunlight (tanning beds or UVA/B treatment) while taking quinolones. If patients need to be outdoors while using quinolones, they should wear loose-fitting clothes that protect skin from sun exposure and discuss other sun protection measures with their physician. If a sunburn-like reaction or skin eruption occurs, patients should contact their physician.
- that ciprofloxacin may cause dizziness and lightheadedness; therefore, patients should know how they react to this drug before they operate an automobile or machinery or engage in activities requiring mental alertness or coordination.
- that ciprofloxacin increases the effects of tizanidine (Zanaflex®). Patients should not use ciprofloxacin if they are already taking tizanidine.
- that ciprofloxacin may increase the effects of theophylline and caffeine. There is a possibility of caffeine accumulation when products containing caffeine are consumed while taking ciprofloxacin.
- that peripheral neuropathies have been associated with ciprofloxacin use. If symptoms of peripheral neuropathy including pain, burning, tingling, numbness and/or weakness develop, they should discontinue treatment and contact their physicians.
- that convulsions have been reported in patients taking quinolones, including ciprofloxacin, and to notify their physician before taking this drug if there is a history of this condition.
- that ciprofloxacin has been associated with an increased rate of adverse events involving joints and surrounding tissue structures (like tendons) in pediatric patients (less than 18 years of age). Parents should inform their child’s physician if the child has a history of joint-related problems before taking this drug. Parents of pediatric patients should also notify their child’s physician of any joint-related problems that occur during or following ciprofloxacin therapy. (See WARNINGS, PRECAUTIONS, Pediatric Use and ADVERSE REACTIONS).
- that diarrhea is a common problem caused by antibiotics which usually ends when the antibiotic is discontinued. Sometimes after starting treatment with antibiotics, patients can develop watery and bloody stools (with or without stomach cramps and fever) even as late as two or more months after having taken the last dose of the antibiotic. If this occurs, patients should contact their physician as soon as possible.
Drug Interactions
In a pharmacokinetic study, systemic exposure of tizanidine (4 mg single dose) was significantly increased (Cmax 7-fold, AUC 10-fold) when the drug was given concomitantly with ciprofloxacin (500 mg bid for 3 days). The hypotensive and sedative effects of tizanidine were also potentiated. Concomitant administration of tizanidine and ciprofloxacin is contraindicated.
As with some other quinolones, concurrent administration of ciprofloxacin with theophylline may lead to elevated serum concentrations of theophylline and prolongation of its elimination half-life. This may result in increased risk of theophylline-related adverse reactions. (See WARNINGS.) If concomitant use cannot be avoided, serum levels of theophylline should be monitored and dosage adjustments made as appropriate.
Some quinolones, including ciprofloxacin, have also been shown to interfere with the metabolism of caffeine. This may lead to reduced clearance of caffeine and prolongation of its serum half-life.
Some quinolones, including ciprofloxacin, have been associated with transient elevations in serum creatinine in patients receiving cyclosporine concomitantly.
Altered serum levels of phenytoin (increased and decreased) have been reported in patients receiving concomitant ciprofloxacin.
The concomitant administration of ciprofloxacin with the sulfonylurea glyburide has, in some patients, resulted in severe hypoglycemia. Fatalities have been reported.
The serum concentrations of ciprofloxacin and metronidazole were not altered when these two drugs were given concomitantly.
Quinolones, including ciprofloxacin, have been reported to enhance the effects of the oral anticoagulant warfarin or its derivatives. When these products are administered concomitantly, prothrombin time or other suitable coagulation tests should be closely monitored.
Probenecid interferes with renal tubular secretion of ciprofloxacin and produces an increase in the level of ciprofloxacin in the serum. This should be considered if patients are receiving both drugs concomitantly.
Renal tubular transport of methotrexate may be inhibited by concomitant administration of ciprofloxacin potentially leading to increased plasma levels of methotrexate. This might increase the risk of methotrexate associated toxic reactions. Therefore, patients under methotrexate therapy should be carefully monitored when concomitant ciprofloxacin therapy is indicated.
Non-steroidal anti-inflammatory drugs (but not acetyl salicylic acid) in combination of very high doses of quinolones have been shown to provoke convulsions in pre-clinical studies.
Following infusion of 400 mg I.V. ciprofloxacin every eight hours in combination with 50 mg/kg I.V. piperacillin sodium every four hours, mean serum ciprofloxacin concentrations were 3.02 mcg/mL 1/2 hour and 1.18 mcg/mL between 6–8 hours after the end of infusion.
Carcinogenesis, Mutagenesis, Impairm